Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 8(1): 123, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753049

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

2.
Front Mol Neurosci ; 10: 329, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089869

RESUMO

Synucleinopathies, neurodegenerative disorders with alpha-synuclein (α-syn) accumulation, are the second leading cause of neurodegeneration in the elderly, however no effective disease-modifying alternatives exist for these diseases. Multiple system atrophy (MSA) is a fatal synucleinopathy characterized by the accumulation of toxic aggregates of α-syn within oligodendroglial cells, leading to demyelination and neurodegeneration, and the reduction of this accumulation might halt the fast progression of MSA. In this sense, the involvement of microRNAs (miRNAs) in synucleinopathies is yet poorly understood, and the potential of manipulating miRNA levels as a therapeutic tool is underexplored. In this study, we analyzed the levels of miRNAs that regulate the expression of autophagy genes in MSA cases, and investigated the mechanistic correlates of miRNA dysregulation in in vitro models of synucleinopathy. We found that microRNA-101 (miR-101) was significantly increased in the striatum of MSA patients, together with a reduction in the expression of its predicted target gene RAB5A. Overexpression of miR-101 in oligodendroglial cell cultures resulted in a significant increase in α-syn accumulation, along with autophagy deficits. Opposite results were observed upon expression of an antisense construct targeting miR-101. Stereotaxic delivery of a lentiviral construct expressing anti-miR-101 into the striatum of the MBP-α-syn transgenic (tg) mouse model of MSA resulted in reduced oligodendroglial α-syn accumulation and improved autophagy. These results suggest that miRNA dysregulation contributes to MSA pathology, with miR-101 alterations potentially mediating autophagy impairments. Therefore, therapies targeting miR-101 may represent promising approaches for MSA and related neuropathologies with autophagy dysfunction.

3.
Neurotox Res ; 32(4): 723-733, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28695547

RESUMO

Combined antiretroviral therapies (cART) have had remarkable success in reducing morbidity and mortality among patients infected with human immunodeficiency virus (HIV). However, mild forms of HIV-associated neurocognitive disorders (HAND), characterized by loss of synapses, remain. cART may maintain an undetectable HIV RNA load but does not eliminate the expression of viral proteins such as trans-activator of transcription (Tat) and the envelope glycoprotein gp120 in the brain. These two viral proteins are known to promote synaptic simplifications by several mechanisms, including alteration of mitochondrial function and dynamics. In this review, we aim to outline the many targets and pathways used by viral proteins to alter mitochondria dynamics, which contribute to HIV-induced neurotoxicity. A better understanding of these pathways is crucial for the development of adjunct therapies for HAND.


Assuntos
Encéfalo/metabolismo , Infecções por HIV/imunologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , HIV-1/metabolismo , Humanos
4.
Acta Neuropathol Commun ; 5(1): 46, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28599681

RESUMO

Proteins implicated in neurodegenerative conditions such as Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB) have been identified in bodily fluids encased in extracellular vesicles called exosomes. Whether exosomes found in DLB patients can transmit pathology is not clear. In this study, exosomes were successfully harvested through ultracentrifugation from brain tissue from DLB and AD patients as well as non-diseased brain tissue. Exosomes extracted from brains diagnosed with either AD or DLB contained aggregate-prone proteins. Furthermore, injection of brain-derived exosomes from DLB patients into the brains of wild type mice induced α-synuclein (α-syn) aggregation. As assessed through immunofluorescent double labeling, α-syn aggregation was observed in MAP2+, Rab5+ neurons. Using a neuronal cell line, we also identified intracellular α-syn aggregation mediated by exosomes is dependent on recipient cell endocytosis. Together, these data suggest that exosomes from DLB patients are sufficient for seeding and propagating α-syn aggregation in vivo.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Exossomos/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Linhagem Celular Tumoral , Endocitose/fisiologia , Exossomos/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Ratos
5.
Neurobiol Dis ; 106: 222-234, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28610892

RESUMO

Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia and progressive supranuclear palsy, which are associated with the pathological aggregation of tau protein into neurofibrillary tangles (NFT). Studies have characterized tau as a "prion-like" protein given its ability to form distinct, stable amyloid conformations capable of transcellular and multigenerational propagation in clonal fashion. It has been proposed that progression of tauopathy could be due to the prion-like propagation of tau, suggesting the possibility that end-stage pathologies, like NFT formation, may require an instigating event such as tau seeding. To investigate this, we applied a novel human induced pluripotent stem cell (hiPSC) system we have developed to serve as a human neuronal model. We introduced the tau repeat domain (tau-RD) with P301L and V337M (tau-RD-LM) mutations into hiPSC-derived neurons and observed expression of tau-RD at levels similar to total tau in postmortem AD brains. Tau aggregation occurred without the addition of recombinant tau fibrils. The conditioned media from tau-RD cultures contained tau-RD seeds, which were capable of inducing aggregate formation in homotypic mode in non-transduced recipient neuronal cultures. The resultant NFTs were thioflavin-positive, silver stain-positive, and assumed fibrillary appearance on transmission electron microscopy (TEM) with immunogold, which revealed paired helical filament 1 (PHF1)-positive NFTs, representing possible recruitment of endogenous tau in the aggregates. Functionally, expression of tau-RD caused neurotoxicity that manifested as axon retraction, synaptic density reduction, and enlargement of lysosomes. The results of our hiPSC study were reinforced by the observation that Tau-RD-LM is excreted in exosomes, which mediated the transfer of human tau to wild-type mouse neurons in vivo. Our hiPSC human neuronal system provides a model for further studies of tau aggregation and pathology as well as a means to study transcellular propagation and related neurodegenerative mechanisms.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Emaranhados Neurofibrilares/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/transplante , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos Endogâmicos C57BL , Mutação , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Neurônios/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Tauopatias/patologia
6.
Neurotox Res ; 29(4): 583-593, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26936603

RESUMO

Neurotoxicity of human immunodeficiency virus-1 (HIV) includes synaptic simplification and neuronal apoptosis. However, the mechanisms of HIV-associated neurotoxicity remain unclear, thus precluding an effective treatment of the neurological complications. The present study was undertaken to characterize novel mechanisms of HIV neurotoxicity that may explain how HIV subjects develop neuronal degeneration. Several neurodegenerative disorders are characterized by mitochondrial dysfunction; therefore, we hypothesized that HIV promotes mitochondrial damage. We first analyzed brains from HIV encephalitis (HIVE) by electron microscopy. Several sections of HIVE subjects contained enlarged and damaged mitochondria compared to brains from HIV subjects with no neurological complications. Similar pathologies were observed in mice overexpressing the HIV protein gp120, suggesting that this viral protein may be responsible for mitochondrial pathology found in HIVE. To gain more information about the cellular mechanisms of gp120 neurotoxicity, we exposed rat cortical neurons to gp120 and we determined cellular oxygen consumption rate, mitochondrial distribution, and trafficking. Our data show that gp120 evokes impairment in mitochondrial function and distribution. These data suggest that one of the mechanisms of HIV neurotoxicity includes altered mitochondrial dynamics in neurons.


Assuntos
Proteína gp120 do Envelope de HIV/toxicidade , Infecções por HIV/patologia , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Adulto , Animais , Células Cultivadas , Estudos de Coortes , Tomografia com Microscopia Eletrônica , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/complicações , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Síndromes Neurotóxicas/genética , Ratos , Smegmamorpha , Fatores de Tempo
7.
Neurobiol Dis ; 86: 154-69, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611103

RESUMO

HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.


Assuntos
Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/virologia , Infecções por HIV/complicações , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neurônios/metabolismo , Adulto , Animais , Encéfalo/ultraestrutura , Encéfalo/virologia , Dinaminas , Encefalite/metabolismo , Encefalite/virologia , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/ultraestrutura , Lobo Frontal/virologia , GTP Fosfo-Hidrolases/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Mitocôndrias/virologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/ultraestrutura , Neurônios/virologia , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
8.
Cell Rep ; 13(4): 771-782, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26489461

RESUMO

Impaired autophagy has been implicated in many neurodegenerative diseases, such as Parkinson's disease (PD), and might be responsible for deposition of aggregated proteins in neurons. However, little is known about how neuronal autophagy and clearance of aggregated proteins are regulated. Here, we show a role for Toll-like receptor 2 (TLR2), a pathogen-recognizing receptor in innate immunity, in regulation of neuronal autophagy and clearance of α-synuclein, a protein aggregated in synucleinopathies, including in PD. Activation of TLR2 resulted in the accumulation of α-synuclein aggregates in neurons as a result of inhibition of autophagic activity through regulation of the AKT/mTOR pathway. In contrast, inactivation of TLR2 resulted in autophagy activation and increased clearance of neuronal α-synuclein, and hence reduced neurodegeneration, in transgenic mice and in in vitro models. These results uncover roles of TLR2 in regulating neuronal autophagy and suggest that the TLR2 pathway may be targeted for autophagy activation strategies in treating neurodegenerative disorders.


Assuntos
Receptor 2 Toll-Like/metabolismo , Animais , Autofagia/genética , Autofagia/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , alfa-Sinucleína/metabolismo
9.
J Neurosci ; 35(5): 1921-38, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653352

RESUMO

Antiretroviral therapy has increased the life span of HIV+ individuals; however, HIV-associated neurocognitive disorder (HAND) occurrence is increasing in aging HIV patients. Previous studies suggest HIV infection alters autophagy function in the aging CNS and HIV-1 proteins affect autophagy in monocyte-derived cells. Despite these findings, the mechanisms leading to dysregulated autophagy in the CNS remain unclear. Here we sought to determine how HIV Tat dysregulates autophagy in neurons. Tat caused a dose-dependent decrease in autophagosome markers, microtubule-associated protein-1 light chain ß II (LC3II), and sequestosome 1(SQSTM1), in a membrane-enriched fraction, suggesting Tat increases autophagic degradation. Bafilomycin A1 increased autophagosome number, LC3II, and SQSTM1 accumulation; Tat cotreatment diminished this effect. Tat had no effect when 3-methyladenine or knockdown of beclin 1 blocked early stages of autophagy. Tat increased numbers of LC3 puncta and resulted in the formation of abnormal autophagosomes in vitro. Likewise, in vivo studies in GFAP-Tat tg mice showed increased autophagosome accumulation in neurons, altered LC3II levels, and neurodegeneration. These effects were reversed by rapamycin treatment. Tat colocalized with autophagosome and lysosomal markers and enhanced the colocalization of autophagosome with lysosome markers. Furthermore, co-IP studies showed that Tat interacts with lysosomal-associated membrane protein 2A (LAMP2A) in vitro and in vivo, and LAMP2A overexpression reduces Tat-induced neurotoxicity. Hence, Tat protein may induce autophagosome and lysosome fusion through interaction with LAMP2A leading to abnormal neuronal autophagy function and dysregulated degradation of critical intracellular components. Therapies targeting Tat-mediated autophagy alterations may decrease neurodegeneration in aging patients with HAND.


Assuntos
Autofagia , Lisossomos/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Complexo AIDS Demência/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , HIV-1/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Ligação Proteica , Ratos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade
10.
ACS Chem Neurosci ; 6(3): 403-16, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25561023

RESUMO

Parkinson's disease (PD) is associated with the formation of toxic α-synuclein oligomers that can penetrate the cell membrane. Familial forms of PD are caused by the point mutations A53T, A30P, E46K, and H50Q. Artificial point mutations E35K and E57K also increase oligomerization and pore formation. We generated structural conformations of α-synuclein and the above-mentioned mutants using molecular dynamics. We elucidated four main regions in these conformers contacting the membrane and found that the region including residues 39-45 (Zone2) may have maximum membrane penetration. E57K mutant had the highest rate of interaction with the membrane, followed by A53T, E46K, and E35K mutants and wild type (wt) α-synuclein. The mutant A30P had the smallest percentage of conformers that contact the membrane by Zone 2 than all other mutants and wt α-synuclein. These results were confirmed experimentally in vitro. We identified the key amino acids that can interact with the membrane (Y38, E62, and N65 (first hydrophilic layer); E104, E105, and D115 (second hydrophilic layer), and V15 and V26 (central hydrophobic layer)) and the residues that are involved in the interprotein contacts (L38, V48, V49, Q62, and T64). Understanding the molecular interactions of α-synuclein mutants is important for the design of compounds blocking the formation of toxic oligomers.


Assuntos
Membrana Celular/metabolismo , Mutação Puntual/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Modelos Moleculares , Neuroblastoma/patologia , Dinâmica não Linear , Conformação Proteica , Estrutura Terciária de Proteína/genética , Ratos , Transfecção , alfa-Sinucleína/química
11.
Neurobiol Dis ; 74: 144-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25173807

RESUMO

Aß accumulation plays a central role in the pathogenesis of Alzheimer's disease (AD). Recent studies suggest that the process of Aß nucleated polymerization is essential for Aß fibril formation, pathology spreading and toxicity. Therefore, targeting this process represents an effective therapeutic strategy to slow or block disease progression. To discover compounds that might interfere with the Aß seeding capacity, toxicity and pathology spreading, we screened a focused library of FDA-approved drugs in vitro using a seeding polymerization assay and identified small molecule inhibitors that specifically interfered with Aß seeding-mediated fibril growth and toxicity. Mitoxantrone, bithionol and hexachlorophene were found to be the strongest inhibitors of fibril growth and protected primary cortical neuronal cultures against Aß-induced toxicity. Next, we assessed the effects of these three inhibitors in vivo in the mThy1-APPtg mouse model of AD (8-month-old mice). We found that mitoxantrone and bithionol, but not hexachlorophene, stabilized diffuse amyloid plaques, reduced the levels of Aß42 oligomers and ameliorated synapse loss, neuronal damage and astrogliosis. Together, our findings suggest that targeting fibril growth and Aß seeding capacity constitutes a viable and effective strategy for protecting against neurodegeneration and disease progression in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Degeneração Neural/tratamento farmacológico , Degeneração Neural/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/efeitos dos fármacos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Bitionol/farmacocinética , Bitionol/farmacologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Gliose/tratamento farmacológico , Gliose/patologia , Gliose/fisiopatologia , Hexaclorofeno/farmacocinética , Hexaclorofeno/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitoxantrona/farmacocinética , Mitoxantrona/farmacologia , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacocinética , Fragmentos de Peptídeos/toxicidade , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Ratos
12.
FASEB J ; 29(3): 911-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25422367

RESUMO

Pathologic amyloid accumulates in the CNS or in peripheral organs, yet the mechanism underlying the targeting of systemic amyloid deposits is unclear. Serum amyloid A (SAA) 1 and 2 are produced predominantly by the liver and form amyloid most commonly in the spleen, liver, and kidney. In contrast, SAA3 is produced primarily extrahepatically and has no causal link to amyloid formation. Here, we identified 8 amyloidosis cases with amyloid composed of SAA3 expanding the uterine wall of goats with near-term fetuses. Uterine amyloid accumulated in the endometrium, only at the site of placental attachment, compromising maternal-fetal gas and nutrient exchange and leading to fetal ischemia and death. No other organ contained amyloid. SAA3 mRNA levels in the uterine endometrium were as high as SAA2 in the liver, yet mass spectrometry of the insoluble uterine peptides identified SAA3 as the predominant protein, and not SAA1 or SAA2. These findings suggest that high local SAA3 production led to deposition at this unusual site. Although amyloid A (AA) amyloid deposits typically consist of an N-terminal fragment of SAA1 or SAA2, here, abundant C-terminal peptides indicated that the uterine amyloid was largely composed of full-length SAA3. The exclusive deposition of SAA3 amyloid in the uterus, together with elevated uterine SAA3 transcripts, suggests that the uterine amyloid deposits were due to locally produced SAA3. This is the first report of SAA3 as a cause of amyloidosis and of AA amyloid deposited exclusively in the uterus.


Assuntos
Amiloide/metabolismo , Amiloidose/patologia , Apoptose , Morte Fetal , Proteoma/análise , Proteína Amiloide A Sérica/metabolismo , Útero/patologia , Sequência de Aminoácidos , Amiloidose/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Cromatografia Líquida , Feminino , Cabras , Técnicas Imunoenzimáticas , Dados de Sequência Molecular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Útero/metabolismo
13.
PLoS One ; 9(11): e113765, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25429466

RESUMO

Amyloid A (AA) amyloidosis is a debilitating, often fatal, systemic amyloid disease associated with chronic inflammation and persistently elevated serum amyloid A (SAA). Elevated SAA is necessary but not sufficient to cause disease and the risk factors for AA amyloidosis remain poorly understood. Here we identify an extraordinarily high prevalence of AA amyloidosis (34%) in a genetically isolated population of island foxes (Urocyon littoralis) with concurrent chronic inflammatory diseases. Amyloid deposits were most common in kidney (76%), spleen (58%), oral cavity (45%), and vasculature (44%) and were composed of unbranching, 10 nm in diameter fibrils. Peptide sequencing by mass spectrometry revealed that SAA peptides were dominant in amyloid-laden kidney, together with high levels of apolipoprotein E, apolipoprotein A-IV, fibrinogen-α chain, and complement C3 and C4 (false discovery rate ≤ 0.05). Reassembled peptide sequences showed island fox SAA as an 111 amino acid protein, most similar to dog and artic fox, with 5 unique amino acid variants among carnivores. SAA peptides extended to the last two C-terminal amino acids in 5 of 9 samples, indicating that near full length SAA was often present in amyloid aggregates. These studies define a remarkably prevalent AA amyloidosis in island foxes with widespread systemic amyloid deposition, a unique SAA sequence, and the co-occurrence of AA with apolipoproteins.


Assuntos
Amiloidose/metabolismo , Amiloidose/veterinária , Vasos Sanguíneos/química , Raposas , Rim/química , Proteína Amiloide A Sérica/análise , Sequência de Aminoácidos , Amiloidose/epidemiologia , Amiloidose/patologia , Animais , Vasos Sanguíneos/patologia , California/epidemiologia , Espécies em Perigo de Extinção , Feminino , Ilhas , Rim/patologia , Masculino , Dados de Sequência Molecular , Boca/química , Boca/patologia , Prevalência , Proteômica , Isolamento Reprodutivo , Proteína Amiloide A Sérica/ultraestrutura , Baço/química , Baço/patologia
14.
BMC Neurosci ; 15: 90, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25047000

RESUMO

BACKGROUND: Alzheimer's Disease (AD) and Fronto temporal lobar dementia (FTLD) are common causes of dementia in the aging population for which limited therapeutical options are available. These disorders are associated with Tau accumulation. We have previously shown that Cerebrolysin™ (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the behavioral deficits and neuropathological alterations in amyloid precursor protein (APP) transgenic (tg) mouse model of AD by reducing hyper-phosphorylated Tau. CBL has been tested in clinical trials for AD, however it's potential beneficial effects in FTLD are unknown. For this purpose we sought to investigate the effects of CBL in a tg model of tauopathy. Accordingly, double tg mice expressing mutant Tau under the mThy-1 promoter and GSK3ß (to enhance Tau phosphorylation) were treated with CBL and evaluated neuropathologically. RESULTS: Compared to single Tau tg mice the Tau/GSK3ß double tg model displayed elevated levels of Tau phosphorylation and neurodegeneration in the hippocampus. CBL treatment reduced the levels of Tau phosphorylation in the dentate gyrus and the degeneration of pyramidal neurons in the temporal cortex and hippocampus of the Tau/GSK3ß double tg mice. Interestingly, the Tau/GSK3ß double tg mice also displayed elevated levels of Dynamin-related protein-1 (Drp-1), a protein that hydrolyzes GTP and is required for mitochondrial division. Ultrastructural analysis of the mitochondria in the Tau/GSK3ß double tg mice demonstrated increased numbers and fragmentation of mitochondria in comparison to non-tg mice. CBL treatment normalized levels of Drp-1 and restored mitochondrial structure. CONCLUSIONS: These results suggest that the ability of CBL to ameliorate neurodegenerative pathology in the tauopathy model may involve reducing accumulation of hyper-phosphorylated Tau and reducing alterations in mitochondrial biogenesis associated with Tau.


Assuntos
Aminoácidos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Fármacos Neuroprotetores/farmacologia , Tauopatias/tratamento farmacológico , Tauopatias/patologia , Envelhecimento , Animais , Modelos Animais de Doenças , Dinaminas/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Acta Neuropathol ; 127(4): 477-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24509835

RESUMO

The olfactory bulb (OB) is one of the first brain regions in Parkinson's disease (PD) to contain alpha-synuclein (α-syn) inclusions, possibly associated with nonmotor symptoms. Mechanisms underlying olfactory synucleinopathy, its contribution to progressive aggregation pathology and nigrostriatal dopaminergic loss observed at later stages, remain unclear. A second hit, such as environmental toxins, is suggestive for α-syn aggregation in olfactory neurons, potentially triggering disease progression. To address the possible pathogenic role of olfactory α-syn accumulation in early PD, we exposed mice with site-specific and inducible overexpression of familial PD-linked mutant α-syn in OB neurons to a low dose of the herbicide paraquat. Here, we found that olfactory α-syn per se elicited structural and behavioral abnormalities, characteristic of an early time point in models with widespread α-syn expression, including hyperactivity and increased striatal dopaminergic marker. Suppression of α-syn reversed the dopaminergic phenotype. In contrast, paraquat treatment synergistically induced degeneration of olfactory dopaminergic cells and opposed the higher reactive phenotype. Neither neurodegeneration nor behavioral abnormalities were detected in paraquat-treated mice with suppressed α-syn expression. By increasing calpain activity, paraquat induced a pathological cascade leading to inhibition of autophagy clearance and accumulation of calpain-cleaved truncated and insoluble α-syn, recapitulating biochemical and structural changes in human PD. Thus our results underscore the primary role of proteolytic failure in aggregation pathology. In addition, we provide novel evidence that olfactory dopaminergic neurons display an increased vulnerability toward neurotoxins in dependence to presence of human α-syn, possibly mediating an olfactory-striatal dopaminergic network dysfunction in mouse models and early PD.


Assuntos
Doença de Alzheimer , Corpo Estriado/patologia , Neurônios Dopaminérgicos/patologia , Bulbo Olfatório/patologia , alfa-Sinucleína/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/ultraestrutura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Neurotoxinas/toxicidade , Bulbo Olfatório/efeitos dos fármacos , Paraquat/toxicidade
16.
J Virol ; 88(4): 2071-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307586

RESUMO

In certain sporadic, familial, and infectious prion diseases, the prion protein misfolds and aggregates in skeletal muscle in addition to the brain and spinal cord. In myocytes, prion aggregates accumulate intracellularly, yet little is known about clearance pathways. Here we investigated the clearance of prion aggregates in muscle of transgenic mice that develop prion disease de novo. In addition to neurodegeneration, aged mice developed a degenerative myopathy, with scattered myocytes containing ubiquitinated, intracellular prion inclusions that were adjacent to myocytes lacking inclusions. Myocytes also showed elevated levels of the endoplasmic reticulum chaperone Grp78/BiP, suggestive of impaired protein degradation and endoplasmic reticulum stress. Additionally, autophagy was induced, as indicated by increased levels of beclin-1 and LC3-II. In C2C12 myoblasts, inhibition of autophagosome maturation or lysosomal degradation led to enhanced prion aggregation, consistent with a role for autophagy in prion aggregate clearance. Taken together, these findings suggest that the induction of autophagy may be a central strategy for prion aggregate clearance in myocytes. IMPORTANCE In prion diseases, the prion protein misfolds and aggregates in the central nervous system and sometimes in other organs, including muscle, yet the cellular pathways of prion aggregate clearance are unclear. Here we investigated the clearance of prion aggregates in the muscle of a transgenic mouse model that develops profound muscle degeneration. We found that endoplasmic reticulum stress pathways were activated and that autophagy was induced. Blocking of autophagic degradation in cell culture models led to an accumulation of aggregated prion protein. Collectively, these findings suggest that autophagy has an instrumental role in prion protein clearance.


Assuntos
Autofagia/fisiologia , Músculo Esquelético/fisiopatologia , Doenças Priônicas/fisiopatologia , Animais , Western Blotting , Primers do DNA/genética , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Células Musculares/metabolismo , Reação em Cadeia da Polimerase
17.
PLoS Pathog ; 9(4): e1003280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637596

RESUMO

Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion.


Assuntos
Sistema Nervoso Central/patologia , Doenças Priônicas/metabolismo , Príons/química , Animais , Sistema Nervoso Central/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosfatidilinositóis/química , Placa Amiloide , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Proteínas Priônicas , Príons/genética , Príons/metabolismo
18.
Am J Pathol ; 182(3): 940-53, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23313024

RESUMO

Progressive accumulation of α-synuclein (α-syn) in limbic and striatonigral systems is associated with the neurodegenerative processes in dementia with Lewy bodies (DLB) and Parkinson's disease (PD). The murine Thy-1 (mThy1)-α-syn transgenic (tg) model recapitulates aspects of degenerative processes associated with α-syn accumulation in these disorders. Given that axonal and synaptic pathologies are important features of DLB and PD, we sought to investigate the extent and characteristics of these alterations in mThy1-α-syn tg mice and to determine the contribution of α-syn c-terminally cleaved at amino acid 122 (CT α-syn) to these abnormalities. We generated a novel polyclonal antibody (SYN105) against the c-terminally truncated sequence (amino acids 121 to 123) of α-syn (CT α-syn) and performed immunocytochemical and ultrastructural analyses in mThy1-α-syn tg mice. We found abundant clusters of dystrophic neurites in layers 2 to 3 of the neocortex, the stratum lacunosum, the dentate gyrus, and cornu ammonis 3 of the hippocampus, striatum, thalamus, midbrain, and pons. Dystrophic neurites displayed intense immunoreactivity detected with the SYN105 antibody. Double-labeling studies with antibodies to phosphorylated neurofilaments confirmed the axonal location of full-length and CT α-syn. α-Syn immunoreactive dystrophic neurites contained numerous electrodense laminated structures. These results show that neuritic dystrophy is a prominent pathologic feature of the mThy1-α-syn tg model and suggest that CT α-syn might play an important role in the process of axonal damage in these mice as well as in DLB and PD.


Assuntos
Axônios/patologia , Doença por Corpos de Lewy/patologia , Proteínas Mutantes/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Axônios/metabolismo , Axônios/ultraestrutura , Biomarcadores/metabolismo , Demografia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neuritos/metabolismo , Neuritos/patologia , Neuritos/ultraestrutura , Transporte Proteico , Sinapses/metabolismo , Sinapses/patologia , Sinapses/ultraestrutura , Antígenos Thy-1/metabolismo , alfa-Sinucleína/imunologia
19.
Neurobiol Aging ; 34(5): 1315-27, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23182244

RESUMO

Aggregation of the amyloid ß-protein (Aß) is believed to play a central role in initiating the molecular cascade that culminates in Alzheimer-type dementia (AD), a disease which in its early stage is characterized by synaptic loss and impairment of episodic memory. Here we show that intracerebroventricular injection of Aß-containing water-soluble extracts of AD brain inhibits consolidation of the memory of avoidance learning in the rat and that this effect is highly dependent on the interval between learning and administration. When injected at 1 hour post training extracts from 2 different AD brains significantly impaired recall tested at 48 hours. Ultrastructural examination of hippocampi from animals perfused after 48 hours revealed that Aß-mediated impairment of avoidance memory was associated with lower density of synapses and altered synaptic structure in the dentate gyrus and CA1 fields. These behavioral and ultrastructural data suggest that human brain-derived Aß impairs formation of long-term memory by compromising the structural plasticity essential for consolidation and that Aß targets processes initiated very early in the consolidation pathway.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Memória Episódica , Ratos , Ratos Wistar
20.
PLoS Pathog ; 8(2): e1002522, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22319450

RESUMO

Infectious prions propagate from peripheral entry sites into the central nervous system (CNS), where they cause progressive neurodegeneration that ultimately leads to death. Yet the pathogenesis of prion disease can vary dramatically depending on the strain, or conformational variant of the aberrantly folded and aggregated protein, PrP(Sc). Although most prion strains invade the CNS, some prion strains cannot gain entry and do not cause clinical signs of disease. The conformational basis for this remarkable variation in the pathogenesis among strains is unclear. Using mouse-adapted prion strains, here we show that highly neuroinvasive prion strains primarily form diffuse aggregates in brain and are noncongophilic, conformationally unstable in denaturing conditions, and lead to rapidly lethal disease. These neuroinvasive strains efficiently generate PrP(Sc) over short incubation periods. In contrast, the weakly neuroinvasive prion strains form large fibrillary plaques and are stable, congophilic, and inefficiently generate PrP(Sc) over long incubation periods. Overall, these results indicate that the most neuroinvasive prion strains are also the least stable, and support the concept that the efficient replication and unstable nature of the most rapidly converting prions may be a feature linked to their efficient spread into the CNS.


Assuntos
Encéfalo/patologia , Sistema Nervoso Central/patologia , Proteínas PrPSc/química , Doenças Priônicas/patologia , Príons/patogenicidade , Animais , Camundongos , Placa Amiloide , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Príons/química , Príons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...